Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 178: 196-207, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428511

RESUMO

Articular cartilage's remarkable low-friction properties are essential to joint function. In osteoarthritis (OA), cartilage degeneration (e.g., proteoglycan loss and collagen damage) decreases tissue modulus and increases permeability. Although these changes impair lubrication in fully depressurized and slowly slid cartilage, new evidence suggests such relationships may not hold under biofidelic sliding conditions more representative of those encountered in vivo. Our recent studies using the convergent stationary contact area (cSCA) configuration demonstrate that articulation (i.e., sliding) generates interfacial hydrodynamic pressures capable of replenishing cartilage interstitial fluid/pressure lost to compressive loading through a mechanism termed tribological rehydration. This fluid recovery sustains in vivo-like kinetic friction coefficients (µk<0.02 in PBS and <0.005 in synovial fluid) with little sensitivity to mechanical properties in healthy tissue. However, the tribomechanical function of compromised cartilage under biofidelic sliding conditions remains unknown. Here, we investigated the effects of OA-like changes in cartilage mechanical properties, modeled via enzymatic digestion of mature bovine cartilage, on its tribomechanical function during cSCA sliding. We found no differences in sliding-driven tribological rehydration behaviors or µk between naïve and digested cSCA cartilage (in PBS or synovial fluid). This suggests that OA-like cartilage retains sufficient functional properties to support naïve-like fluid recovery and lubrication under biofidelic sliding conditions. However, OA-like cartilage accumulated greater total tissue strains due to elevated strain accrual during initial load application. Together, these results suggest that elevated total tissue strains-as opposed to activity-mediated strains or friction-driven wear-might be the key biomechanical mediator of OA pathology in cartilage. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) decreases cartilage's modulus and increases its permeability. While these changes compromise frictional performance in benchtop testing under low fluid load support (FLS) conditions, whether such observations hold under sliding conditions that better represent the joints' dynamic FLS conditions in vivo is unclear. Here, we leveraged biofidelic benchtop sliding experiments-that is, those mimicking joints' native sliding environment-to examine how OA-like changes in mechanical properties effect cartilage's natural lubrication. We found no differences in sliding-mediated fluid recovery or kinetic friction behaviors between naïve and OA-like cartilage. However, OA-like cartilage experienced greater strain accumulation during load application, suggesting that elevated tissue strains (not friction-driven wear) may be the primary biomechanical mediator of OA pathology.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Bovinos , Lubrificação , Estresse Mecânico , Líquido Sinovial , Osteoartrite/terapia , Fricção , Digestão
2.
J Biomech Eng ; 146(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323667

RESUMO

Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (µk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated µk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low µk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, µk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.


Assuntos
Cartilagem Articular , Iridoides , Osteoartrite , Humanos , Lubrificação , Glutaral , Colágeno , Osteoartrite/tratamento farmacológico , Fricção , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...